

Data Sheet

LXI class cerified

Available frequncy ranges

N9030A-503 3 Hz to 3.6 GHz
N9030A-508 3 Hz to 8.4 GHz
N9030A-513 3 Hz to 13.6 GHz
N9030A-526 3 Hz to 26.5 GHz
N9030A-543 3 Hz to 43 GHz
N9030A-544 3 Hz to 44 GHz
N9030A-550 3 Hz to 50 GHz
This data sheet is a summary of the specifications and conditions for PXA signal analyzers. For the complete specifications guide, visit: www.agilent.com/find/pxa_specifications

Agilent Technologies

Table of Contents

Definitions and Conditions 3
Frequency and Time Specifications4
Amplitude Accuracy and Range Specifications 6
Dynamic Range Specifications 9
PowerSuite Measurement Specifications 16
General Specifications 17
Inputs and Outputs 18
Other Optional Outputs. 21
I/Q Analyzer 22
I/Q Analyzer - Option B25. 24
I/Q Analyzer - Option B40 25
I/Q Analyzer - Option B85 or B1X 26
Real-time spectrum analyzer (RTSA) 27
Related Literature 28

Agilent's future-ready PXA signal analyzer is the evolutionary replacement for your current highperformance analyzer. It helps you sustain past achievements, enhance current designs and accelerate future innovations.

Its performance, flexibility, capability and compatibility enable you to address demanding applications in aerospace, defense, commercial communications and more.

- Reveal new levels of signal detail with outstanding RF performance
- Increase test throughput and protect your system investments
- Refresh legacy systems with a highly compatible replacement

Definitions and Conditions

Specifications describe the performance of parameters covered by the product warranty and apply to temperature ranges 0 to $55^{\circ} \mathrm{C}$, unless otherwise noted.

95th percentile values indicate the breadth of the population (approx. 2σ) of performance tolerances expected to be met in 95 percent of the cases with a 95 percent confidence, for any ambient temperature in the range of 20 to $30^{\circ} \mathrm{C}$. In addition to the statistical observations of a sample of instruments, these values include the effects of the uncertainties of external calibration references. These values are not warranted. These values are updated occasionally if a significant change in the statistically observed behavior of production instruments is observed.

Typical describes additional product performance information that is not covered by the product warranty. It is performance beyond specifications that 80 percent of the units exhibit with a 95 percent confidence level over the temperature range 20 to $30^{\circ} \mathrm{C}$. Typical performance does not include measurement uncertainty.

Nominal values indicate expected performance, or describe product performance that is useful in the application of the product, but is not covered by the product warranty.

The analyzer will meet its specifications when:

- The analyzer is within its calibration cycle.
- Under auto couple control, except that Auto Sweep Time Rules = Accy.
- For signal frequencies $<10 \mathrm{MHz}$, DC coupling applied.
- The analyzer has been stored at an ambient temperature within the allowed operating range for at least two hours before being turned on, if it had previously been stored at a temperature range inside the allowed storage range but outside the allowed operating range.
- The analyzer has been turned on at least 30 minutes with Auto Align set to normal, or if Auto Align is set to off or partial, alignments must have been run recently enough to prevent an Alert message. If the Alert condition is changed from Time and Temperature to one of the disabled duration choices, the analyzer may fail to meet specifications without informing the user.

For the complete specifications guide, visit: www.agilent.com/find/pxa_specifications

Frequency and Time Specifications

Frequency range	DC coupled	AC coupled
Option 503	3 Hz to 3.6 GHz	10 MHz to 3.6 GHz
Option 508	3 Hz to 8.4 GHz	10 MHz to 8.4 GHz
Option 513	3 Hz to 13.6 GHz	10 MHz to 13.6 GHz
Option 526	3 Hz to 26.5 GHz	10 MHz to 26.5 GHz
Option 543	3 Hz to 43 GHz	NA
Option 544	3 Hz to 44 GHz	NA
Option 550	3 Hz to 50 GHz	NA
Band LO multiple (N)		
$0 \quad 1$	3 Hz to 3.6 GHz	
$1 \quad 1$	3.5 to 8.4 GHz	
2	8.3 to 13.6 GHz	
3 2	13.5 to 17.1 GHz	
4	17 to 26.5 GHz	
$5 \quad 4$	26.4 to 34.5 GHz	
6 8	34.4 to 50 GHz	
Precision frequency reference		
Accuracy	\pm [(time since last adjustment x aging rate) + temperature stability + calibration accuracy]	
Aging rate	$\begin{aligned} & \pm 1 \times 10^{-7} / \text { year } \\ & \pm 1.5 \times 10^{-7} / 2 \text { years } \end{aligned}$	
Temperature stability 20 to $30^{\circ} \mathrm{C}$ Full temperature range	$\begin{aligned} & \pm 1.5 \times 10^{-8} \\ & \pm 5 \times 10^{-8} \end{aligned}$	
Achievable initial calibration accuracy	$\pm 4 \times 10^{-8}$	
Example frequency reference accuracy 1 year after last adjustment 20 to $30^{\circ} \mathrm{C}$	$\begin{aligned} & = \pm\left(1 \times 1 \times 10^{-7}+1.5 \times 10^{-8}+4 \times 10^{-8}\right) \\ & = \pm 1.55 \times 10^{-7} \end{aligned}$	
Residual FM Center frequency $=1 \mathrm{GHz}$ 10 Hz RBW, 10 Hz VBW	$\leq(0.25 \mathrm{~Hz} \times \mathrm{N}) \mathrm{p}-\mathrm{p}$ in 20 ms nominal See band table above for N (LO multiple)	
Frequency readout accuracy (start, stop, center, marker)		
\pm (marker frequency x frequency reference accuracy $+0.10 \% \mathrm{x}$ span $+5 \% \mathrm{xRBW}+2 \mathrm{~Hz}+0.5 \times$ horizontal resolution ${ }^{1}$)		
Marker frequency counter		
Accuracy	\pm (marker frequency x frequency reference accuracy +0.100 Hz)	
Delta counter accuracy	\pm (delta frequency x frequency reference accuracy +0.141 Hz	
Counter resolution	0.001 Hz	
Frequency span (FFT and swept mode)		
Range	0 Hz (zero span), 10 Hz to maximum frequency of instrumen	
Resolution	2 Hz	
Accuracy Swept FFT	$\begin{aligned} & \pm(0.1 \% \text { x span + horizontal resolution }) \\ & \pm(0.1 \% \text { x span }+ \text { horizontal resolution }) \end{aligned}$	

[^0]| Sweep time and triggering | | |
| :---: | :---: | :---: |
| Range | $\begin{aligned} & \text { Span }=0 \mathrm{~Hz} \\ & \text { Span } \geq 10 \mathrm{~Hz} \end{aligned}$ | $1 \mu \mathrm{~s}$ to 6000 s
 1 ms to 4000 s |
| Accuracy | $\begin{aligned} & \text { Span } \geq 10 \mathrm{~Hz} \text {, swept } \\ & \text { Span } \geq 10 \mathrm{~Hz}, \text { FFT } \\ & \text { Span }=0 \mathrm{~Hz} \end{aligned}$ | $\begin{aligned} & \pm 0.01 \% \text { nominal } \\ & \pm 40 \% \text { nominal } \\ & \pm 0.01 \% \text { nominal } \end{aligned}$ |
| Sweep trigger | Free run, line, video, external 1, external 2, RF burst, periodic timer | |
| Trigger Delay | $\begin{aligned} & \text { Span }=0 \mathrm{~Hz} \text { or FFT } \\ & \text { Span } \geq 10 \mathrm{~Hz} \text {, swept } \\ & \text { Resolution } \end{aligned}$ | $\begin{aligned} & -150 \text { to }+500 \mathrm{~ms} \\ & 0 \text { to } 500 \mathrm{~ms} \\ & 0.1 \mu \mathrm{~s} \end{aligned}$ |
| Time gating | | |
| Gate methods Gate length range (except method $=$ FFT)
 Gate delay range
 Gate delay jitter | Gated LO; gated video; gated FFT
 $1 \mu \mathrm{~s}$ to 5.0 s
 0 to 100.0 s
 33.3 ns p-p nominal | |
| Sweep (trace) point range | | |
| All spans | 1 to 40001 | |
| Resolution bandwidth (RBW) | | |
| Range (-3.01 dB bandwidth) | 1 Hz to 3 MHz (10\% steps), 4, 5, 6, 8 MHz | |
| Bandwidth accuracy (power) RBW range | 1 Hz to 100 kHz
 110 kHz to 1.0 MHz (<3.6 GHz CF)
 1.1 to $2 \mathrm{MHz}(<3.6 \mathrm{GHz} \mathrm{CF})$
 2.2 to 3 MHz ($<3.6 \mathrm{GHz} \mathrm{CF}$)
 4 to 8 MHz (<3.6 GHz CF) | $\begin{aligned} & \pm 0.5 \%(\pm 0.022 \mathrm{~dB}) \\ & \pm 1.0 \%(\pm 0.044 \mathrm{~dB}) \\ & \pm 0.07 \mathrm{~dB} \text { nominal } \\ & \pm 0.10 \mathrm{~dB} \text { nominal } \\ & \pm 0.20 \mathrm{~dB} \text { nominal } \end{aligned}$ |
| Bandwidth accuracy (-3.01 dB) RBW range | 1 Hz to 1.3 MHz | $\pm 2 \%$ nominal |
| Selectivity ($-60 \mathrm{~dB} /-3 \mathrm{~dB}$) | | 4.1:1 nominal |
| EMI bandwidth (CISPR compliant) | $200 \mathrm{~Hz}, 9 \mathrm{kHz}, 120 \mathrm{kHz}, 1 \mathrm{MHz}$ | (Option EMC required) |
| EMI bandwidth (MIL STD 461E compliant) | $10 \mathrm{~Hz}, 100 \mathrm{~Hz}, 1 \mathrm{kHz}, 10 \mathrm{kHz}$, $100 \mathrm{kHz}, 1 \mathrm{MHz}$ | (Option EMC required) |
| Analysis bandwidth ${ }^{1}$ | | |
| Maximum bandwidth | Standard
 Option B25
 Option B40
 Option B85
 Option B1X | 10 MHz 25 MHz 40 MHz 85 MHz 160 MHz |
| Video bandwidth (VBW) | | |
| Range | 1 Hz to 3 MHz (10% steps), 4, 5, 6, 8 MHz , and wide open (labeled 50 MHz) | |
| Accuracy | $\pm 6 \%$ nominal (in swept mode and zero span) | |
| Measurement speed ${ }^{2}$ | Standard | |
| Local measurement and display update rate | $10 \mathrm{~ms} \mathrm{(100/s)} \mathrm{nominal}$ | |
| Remote measurement and LAN transfer rate | $10 \mathrm{~ms} \mathrm{(100/s)} \mathrm{nominal}$ | |
| Marker peak search | 2.5 ms nominal | |
| Center frequency tune and transfer (RF) | 43 ms nominal | |
| Center frequency tune and transfer ($\mu \mathrm{W}$) | 69 ms nominal | |
| Measurement/mode switching | 40 ms nominal | |
| Analysis bandwidth is the instantaneous bandwidth available around a center frequency over which the input signal can be digitized for further analysis or processing in the time, frequency, or modulation domain.
 Sweep points $=101$. | | |

Amplitude Accuracy and Range Specifications

Amplitude range			
Measurement range	Displayed average n	(DANL) to ma	evel
Input attenuator range (3 Hz to 50 GHz)	0 to 70 dB in 2 dB st		
Electronic attenuator (Option EA3)			
Frequency range	3 Hz to 3.6 GHz		
Attenuation range Electronic attenuator range Full attenuation range (mechanical + electronic)	0 to $24 \mathrm{~dB}, 1 \mathrm{~dB}$ ste 0 to $94 \mathrm{~dB}, 1 \mathrm{~dB}$ ste		
Maximum safe input level			
Average total power (with and without preamp)	+30 dBm (1 W)		
Peak pulse power	< 10 ¢ s pulse width,	ty cycle +50 dB	put attenuatio
DC volts DC coupled AC coupled	$\begin{aligned} & \pm 0.2 \mathrm{Vdc} \\ & \pm 100 \mathrm{Vdc} \text { (For frequ } \end{aligned}$	$\text { tion } 503,508,5$	
Display range			
Log scale	0.1 to $1 \mathrm{~dB} /$ division 1 to $20 \mathrm{~dB} /$ division	steps teps (10 display	
Linear scale	10 divisions		
Scale units	$\mathrm{dBm}, \mathrm{dBmV}, \mathrm{dB} \mu \mathrm{V}$,	B A , V, W, A	
Frequency response		Specification	95th perce
(10 dB input attenuation, 20 to $30^{\circ} \mathrm{C}$, preselector centering applied above 3.6 GHz)			
RF/MW (Option 503, 508, 513, 526)	3 Hz to 10 MHz 10 to 20 MHz 20 MHz to 3.6 GHz 3.5 to 8.4 GHz 8.3 to 13.6 GHz 13.5 to 22.0 GHz 22.0 to 26.5 GHz	$\begin{aligned} & \pm 0.46 \mathrm{~dB} \\ & \pm 0.35 \mathrm{~dB} \\ & \pm 0.35 \mathrm{~dB} \\ & \pm 1.5 \mathrm{~dB} \\ & \pm 2.0 \mathrm{~dB} \\ & \pm 2.0 \mathrm{~dB} \\ & \pm 2.5 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \pm 0.16 \mathrm{~dB} \\ & \pm 0.39 \mathrm{~dB} \\ & \pm 0.45 \mathrm{~dB} \\ & \pm 0.62 \mathrm{~dB} \\ & \pm 0.82 \mathrm{~dB} \end{aligned}$
Millimeter-Wave (Option 543, 544, 550)	3 Hz to 20 MHz 20 to 50 MHz 50 MHz to 3.6 GHz 3.5 to 5.2 GHz 5.2 to 8.4 GHz 8.3 to 13.6 GHz 13.5 to 17.1 GHz 17.0 to 22.0 GHz 22.0 to 26.5 GHz 26.4 to 34.5 GHz 34.4 to 50 GHz	$\begin{aligned} & \pm 0.46 \mathrm{~dB} \\ & \pm 0.35 \mathrm{~dB} \\ & \pm 0.35 \mathrm{~dB} \\ & \pm 1.7 \mathrm{~dB} \\ & \pm 1.5 \mathrm{~dB} \\ & \pm 2.0 \mathrm{~dB} \\ & \pm 2.0 \mathrm{~dB} \\ & \pm 2.0 \mathrm{~dB} \\ & \pm 2.5 \mathrm{~dB} \\ & \pm 2.5 \mathrm{~dB} \\ & \pm 3.2 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \pm 0.19 \mathrm{~dB} \\ & \pm 0.15 \mathrm{~dB} \\ & \pm 0.70 \mathrm{~dB} \\ & \pm 0.57 \mathrm{~dB} \\ & \pm 0.54 \mathrm{~dB} \\ & \pm 0.64 \mathrm{~dB} \\ & \pm 0.72 \mathrm{~dB} \\ & \pm 0.71 \mathrm{~dB} \\ & \pm 0.93 \mathrm{~dB} \\ & \pm 1.24 \mathrm{~dB} \end{aligned}$
Preamp on (0 dB attenuation) (Option P03, P08, P13, P26, P43, P44, P50)			
RF/MW (Option 503, 508, 513, 526)	9 to 100 kHz 100 kHz to 50 MHz 50 MHz to 3.6 GHz 3.5 to 8.4 GHz 8.3 to 13.6 GHz 13.5 to 17.1 GHz 17.0 to 22.0 GHz 22.0 to 26.5 GHz	$\begin{aligned} & \pm 0.68 \mathrm{~dB} \\ & \pm 0.55 \mathrm{~dB} \\ & \pm 2.0 \mathrm{~dB} \\ & \pm 2.3 \mathrm{~dB} \\ & \pm 2.5 \mathrm{~dB} \\ & \pm 3.0 \mathrm{~dB} \\ & \pm 3.5 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \pm 0.36 \mathrm{~dB} \\ & \pm 0.26 \mathrm{~dB} \\ & \pm 0.28 \mathrm{~dB} \\ & \pm 0.64 \mathrm{~dB} \\ & \pm 0.76 \mathrm{~dB} \\ & \pm 0.95 \mathrm{~dB} \\ & \pm 1.41 \mathrm{~dB} \\ & \pm 1.61 \mathrm{~dB} \end{aligned}$

Millimeter-Wave (Option 543, 544, 550)	9 to 100 kHz 100 kHz to 50 MHz 50 MHz to 3.6 GHz 3.5 to 5.2 GHz 5.2 to 8.4 GHz 8.3 to 13.6 GHz 13.5 to 17.1 GHz 17.0 to 22.0 GHz 22.0 to 26.5 GHz 26.4 to 34.5 GHz 34.4 to 50 GHz	$\begin{aligned} & \pm 0.68 \mathrm{~dB} \\ & \pm 0.60 \mathrm{~dB} \\ & \pm 2.0 \mathrm{~dB} \\ & \pm 2.0 \mathrm{~dB} \\ & \pm 2.3 \mathrm{~dB} \\ & \pm 2.5 \mathrm{~dB} \\ & \pm 3.0 \mathrm{~dB} \\ & \pm 3.5 \mathrm{~dB} \\ & \pm 3.0 \mathrm{~dB} \\ & \pm 4.1 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \pm 0.40 \mathrm{~dB} \\ & \pm 0.34 \mathrm{~dB} \\ & \pm 0.31 \mathrm{~dB} \\ & \pm 0.81 \mathrm{~dB} \\ & \pm 0.70 \mathrm{~dB} \\ & \pm 0.79 \mathrm{~dB} \\ & \pm 0.88 \mathrm{~dB} \\ & \pm 1.07 \mathrm{~dB} \\ & \pm 1.03 \mathrm{~dB} \\ & \pm 1.35 \mathrm{~dB} \\ & \pm 1.69 \mathrm{~dB} \end{aligned}$
Input attenuation switching uncertainty		Specifications	Additional information
Relative to 10 dB and preamp off			
At 50 MHz (reference frequency)	attenuation 12 to 40 dB attenuation 2 to 8 dB attenuation 0 dB	$\begin{aligned} & \pm 0.14 \mathrm{~dB} \\ & \pm 0.18 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \pm 0.03 \mathrm{~dB} \text { typical } \\ & \pm 0.05 \mathrm{~dB} \text { typical } \\ & \pm 0.05 \mathrm{~dB} \text { nominal } \end{aligned}$
attenuation $>2 \mathrm{~dB}$ 3 Hz to 3.6 GHz $\pm 0.3 \mathrm{~dB}$ nomin 3.5 to 8.4 GHz $\pm 0.5 \mathrm{~dB}$ nomin 8.3 to 13.6 GHz $\pm 0.7 \mathrm{~dB}$ nomin 13.5 to 26.5 GHz $\pm 0.7 \mathrm{~dB}$ nomin 26.4 to 50 GHz $\pm 1.0 \mathrm{~dB}$ nomin			
Total absolute amplitude accuracy			
(10 dB attenuation, 20 to $30^{\circ} \mathrm{C}, 1 \mathrm{~Hz} \leq \mathrm{RBW} \leq 1 \mathrm{MHz}$, input signal -10 to -50 dBm , all settings auto-coupled except Auto Swp Time $=$ Accy, any reference level, any scale, $\sigma=$ nominal standard deviation)			
	At 50 MHz At all frequencies 10 Hz to 3.6 GHz	$\begin{aligned} & \pm 0.24 \mathrm{~dB} \\ & \pm(0.24 \mathrm{~dB}+\text { frequency resp } \\ & \pm 0.19 \mathrm{~dB} \text { (95th Percentile a } \end{aligned}$	
Preamp on (Option P03, P08, P13, P26, P43, P44 and P50)	At all frequencies	\pm ($0.36 \mathrm{~dB}+$ frequency resp	
Input voltage standing wave ratio (VSWR)			
		Freq Opt 503, 508, 513, 526	Freq Opt 543, 544, 550
(10 dB input attenuation)	50 MHz 10 MHz to 3.6 GHz 3.5 to 8.4 GHz 8.3 to 13.6 GHz 13.5 to 17.1 GHz 17.0 to 26.5 GHz 26.4 to 34.5 GHz 34.4 to 50 GHz	1.07:1 nominal 1.139 (95th percentile) 1.290 (95th percentile) 1.388 (95th percentile) 1.403 (95th percentile) 1.475 (95th percentile) NA NA	1.025:1 nominal 1.134 (95th percentile) 1.152 (95th percentile) 1.178 (95th percentile) 1.204 (95th percentile) 1.331 (95th percentile) 1.321 (95th percentile) 1.378 (95th percentile)
Preamp on (0 dB input attenuation) (Option P03. P08, P13, P26, P43, P44, and P50)	10 MHz to 3.6 GHz 3.5 to 8.4 GHz 8.3 to 13.6 GHz 13.5 to 17.1 GHz 17.0 to 26.5 GHz 26.4 to 34.5 GHz 34.4 to 50 GHz	1.45 (95th percentile) 1.54 (95th percentile) 1.57 (95th percentile) 1.48 (95th percentile) 1.54 (95th percentile) NA NA	1.393 nominal 1.50 (95th percentile) 1.310 (95th percentile) 1.330 (95th percentile) 1.339 (95th percentile) 1.41 (95th percentile) 1.42 (95th percentile)

Resolution bandwidth switching uncertainty (referenced to 30 kHz RBW)		
1 Hz to 1.5 MHz RBW	$\pm 0.03 \mathrm{~dB}$	
1.6 MHz to 2.7 MHz RBW	$\pm 0.05 \mathrm{~dB}$	
3 MHz RBW	$\pm 0.10 \mathrm{~dB}$	
4, 5, 6, 8 MHz RBW	$\pm 0.30 \mathrm{~dB}$	
Reference level		
Range Log scale Linear scale	$\begin{aligned} & -170 \text { to }+30 \mathrm{dBm} \\ & 707 \mathrm{pV} \text { to } 7.07 \mathrm{~V} \end{aligned}$	steps (0.01 dB) resolution
Accuracy	0 dB	
Display scale switching uncertainty		
Switching between linear and log	0 dB	
Log scale/div switching	0 dB	
Display scale fidelity		
Between -10 dBm and -80 dBm input mixer level	$\pm 0.10 \mathrm{~dB}$ total	$\pm 0.04 \mathrm{~dB}$ typical
Below - 18 dBm input mixer level	$\pm 0.07 \mathrm{~dB}$	$\pm 0.02 \mathrm{~dB}$ typical
Trace detectors		
Normal, peak, sample, negative peak, log power average, RMS average, and voltage avera		
Preamplifier		
Frequency range ${ }^{1}$	Option P03 Option P08 Option P13 Option P26 Option P43 Option P44 Option P50	9 kHz to 3.6 GHz 9 kHz to 8.4 GHz 9 kHz to 13.6 GHz 9 kHz to 26.5 GHz 9 kHz to 43 GHz 9 kHz to 44 GHz 9 kHz to 50 GHz
Gain	9 kHz to 3.6 GHz 3.6 to 26.5 GHz 26.5 to 50 GHz	+20 dB nominal +35 dB nominal +40 dB nominal

1. Below 100 kHz , only 95 th percentile (approx. 2σ) value for frequency response is provided.

Dynamic Range Specifications

Millimeter-Wave (Option 543, 544, 550)		Normal ${ }^{1 / L N P ~ e n a b l e d ~}{ }^{2}$	Normal ${ }^{1 / L N P ~ e n a b l e d ~}{ }^{2}$
Preamp off	3 Hz to 9 kHz 9 to 100 kHz 100 kHz to 1 MHz 1 to 10 MHz 10 MHz to 1.2 GHz 1.2 to 2.1 GHz 2.1 to 3 GHz 3 to 3.6 GHZ 3.5 to 4.2 GHz 4.2 to 6.6 GHz 6.6 to 8.4 GHz 8.3 to 13.6 GHz 13.5 to 14 GHz 14 to 17 GHz 17 to 22.5 GHz 22.5 to 26.5 GHz 26.4 to 34 GHz 33.9 to 37 GHz 37 to 40 GHz 40 to 46 GHz 46 to 49 GHz 49 to 50 GHz	$-146 \mathrm{dBm} / \mathrm{NA}$ $-150 \mathrm{dBm} / \mathrm{NA}$ $-155 \mathrm{dBm} / \mathrm{NA}$ $-155 \mathrm{dBm} / \mathrm{NA}$ $-153 \mathrm{dBm} / \mathrm{NA}$ - $152 \mathrm{dBm} / \mathrm{NA}$ $-151 \mathrm{dBm} / \mathrm{NA}$ $-143 \mathrm{dBm} /-150 \mathrm{dBm}$ $-144 \mathrm{dBm} /-152 \mathrm{dBm}$ $-147 \mathrm{dBm} /-154 \mathrm{dBm}$ $-147 \mathrm{dBm} /-153 \mathrm{dBm}$ $-143 \mathrm{dBm} /-150 \mathrm{dBm}$ $-145 \mathrm{dBm} /-151 \mathrm{dBm}$ $-141 \mathrm{dBm} /-149 \mathrm{dBm}$ $-139 \mathrm{dBm} /-146 \mathrm{dBm}$ $-138 \mathrm{dBm} /-146 \mathrm{dBm}$ $-134 \mathrm{dBm} /-141 \mathrm{dBm}$ $-132 \mathrm{dBm} /-140 \mathrm{dBm}$ $-130 \mathrm{dBm} /-140 \mathrm{dBm}$ $-130 \mathrm{dBm} /-138 \mathrm{dBm}$ $-128 \mathrm{dBm} /-138 \mathrm{dBm}$	- $100 \mathrm{dBm} /$ NA nominal -152 dBm/NA typical $-156 \mathrm{dBm} /$ NA typical -158 dBm/NA typical $-157 \mathrm{dBm} /$ NA typical - $155 \mathrm{dBm} /$ NA typical - $154 \mathrm{dBm} /$ NA typical $-153 \mathrm{dBm} /$ NA typical $-153 \mathrm{dBm} /$ NA typical $-147 \mathrm{dBm} /-154 \mathrm{dBm}$ typical $-148 \mathrm{dBm} /-155 \mathrm{dBm}$ typical $-149 \mathrm{dBm} /-156 \mathrm{dBm}$ typical $-149 \mathrm{dBm} /-152 \mathrm{dBm}$ typical $-146 \mathrm{dBm} /-153 \mathrm{dBm}$ typical $-148 \mathrm{dBm} /-152 \mathrm{dBm}$ typical $-146 \mathrm{dBm} /-150 \mathrm{dBm}$ typical - $142 \mathrm{dBm} /-149 \mathrm{dBm}$ typical $-139 \mathrm{dBm} /-147 \mathrm{dBm}$ typical $-138 \mathrm{dBm} /-145 \mathrm{dBm}$ typical $-135 \mathrm{dBm} /-145 \mathrm{dBm}$ typical $-135 \mathrm{dBm} /-142 \mathrm{dBm}$ typical $-133 \mathrm{dBm} /-142 \mathrm{dBm}$ typical
Preamp on Option P03, P08, P13, P26, P43, P44, P50³	100 to 200 kHz 200 to 500 kHz 500 kHz to 1 MHz 1 to 10 MHz 10 MHz to 2.1 GHz 2.1 to 3.6 GHz	$-157 \mathrm{dBm} / \mathrm{NA}$ $-160 \mathrm{dBm} / \mathrm{NA}$ - $162 \mathrm{dBm} / \mathrm{NA}$ -164 dBm/NA $-164 \mathrm{dBm} / \mathrm{NA}$ $-163 \mathrm{dBm} / \mathrm{NA}$	-160 dBm/NA typical - $163 \mathrm{dBm} /$ NA typical - $165 \mathrm{dBm} /$ NA typical - $167 \mathrm{dBm} /$ NA typical $-166 \mathrm{dBm} /$ NA typical - $164 \mathrm{dBm} /$ NA typical
Option P08, P13, P26, P43, P44, P50 ${ }^{3}$ Option P13, P26, P43, P44, P50 ${ }^{3}$ Option P26, P43, P44, P50 ${ }^{3}$	3.5 to 8.4 GHz 8.3 to 13.6 GHz 13.5 to 17 GHz 17 to 20 GHz 20 to 26.5 GHz	$\begin{aligned} & \hline-161 \mathrm{dBm} / \mathrm{NA} \\ & -161 \mathrm{dBm} / \mathrm{NA} \\ & -161 \mathrm{dBm} / \mathrm{NA} \\ & -160 \mathrm{dBm} / \mathrm{NA} \\ & -158 \mathrm{dBm} / \mathrm{NA} \end{aligned}$	$-163 \mathrm{dBm} / \mathrm{NA}$ typical -163 dBm/NA typical - $163 \mathrm{dBm} /$ NA typical - 163 dBm/NA typical -161 dBm/NA typical
Option P43, P44, P50 ${ }^{3}$	26.4 to 30 GHz 30 to 34 GHz 33.9 to 37 GHz 37 to 40 GHz 40 to 43 GHz	$\begin{aligned} & \hline-157 \mathrm{dBm} / \mathrm{NA} \\ & -155 \mathrm{dBm} / \mathrm{NA} \\ & -153 \mathrm{dBm} / \mathrm{NA} \\ & -152 \mathrm{dBm} / \mathrm{NA} \\ & -149 \mathrm{dBm} / \mathrm{NA} \end{aligned}$	-159 dBm/NA typical - $158 \mathrm{dBm} /$ NA typical - $157 \mathrm{dBm} /$ NA typical - $156 \mathrm{dBm} /$ NA typical $-154 \mathrm{dBm} /$ NA typical
Option P44, P50 ${ }^{3}$	43 to 44 GHz	-149 dBm/NA	-154 dBm/NA typical
Option P50 ${ }^{3}$	44 to 46 GHz 46 to 50 GHz	$\begin{aligned} & -149 \mathrm{dBm} / \mathrm{NA} \\ & -146 \mathrm{dBm} / \mathrm{NA} \end{aligned}$	$-154 \mathrm{dBm} / \mathrm{NA}$ typical $-150 \mathrm{dBm} /$ NA typical

[^1]| DANL with Noise Floor Extension (NFE) on | | | | Improvement @ 95th percentile | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Millimeter-Wave (Option 543, 544, 550) | | | | Preamp Off | Preamp On | LNP enabled ${ }^{1,2}$ |
| Band 0, f $>20 \mathrm{MHz}$ | | | | 10 dB | 9 dB | N/A |
| Band 1 | | | | 6 dB | 5 dB | 6 dB |
| Band 2 | | | | 8 dB | 8 dB | 8 dB |
| Band 3 | | | | 9 dB | 8 dB | 10 dB |
| Band 4 | | | | 7 dB | 6 dB | 8 dB |
| Band 5 | | | | 6 dB | 6 dB | 6 dB |
| Band 6 | | | | 6 dB | 5 dB | 7 dB |
| Example of effective DANL Frequency 20 to $30^{\circ} \mathrm{C}$ | Preamp Off | Preamp On | LNP enabled ${ }^{1,2}$ | | | |
| Mid-Band 0 (1.8 GHz) | -162 dBm | -172 dBm | N/A | | | |
| Mid-Band 1 (5.95 GHz) | -151 dBm | -165 dBm | -158 dBm | | | |
| Mid-Band 2 (10.95 GHz) | -152 dBm | -165 dBm | -158 dBm | | | |
| Mid-Band 3 (15.3 GHz) | -152 dBm | -165 dBm | -158 dBm | | | |
| Mid-Band 4 (21.75 GHz) | $-149 \mathrm{dBm}$ | -163 dBm | -155 dBm | | | |
| Mid-Band 5 (30.4 GHz) | $-144 \mathrm{dBm}$ | $-160 \mathrm{dBm}$ | -151 dBm | | | |
| Mid-Band 6 (42.7 GHz) | $-139 \mathrm{dBm}$ | -154 dBm | -147 dBm | | | |

1. LNP (Low Noise Path) requires option LNP.
2. At higher frequency bands (beyond 3.6 GHz), Preamp "On" supersedes "LNP enabled". LNP cannot operate simultaneously with preamp.

Residues, images, and spurious responses

Residual responses (Input terminated and 0 dB attenuation)	200 kHz to 8.4 GHz Zero span or FFT or other frequencies	$\begin{aligned} & -100 \mathrm{dBm} \\ & -100 \mathrm{dBm} \text { nominal } \end{aligned}$		
Image responses	Tuned Freq (f)	Excitation Freq	Response	
(Mixer level at -10 dBm)	10 MHz to 26.5 GHz 10 MHz to 3.6 GHz 10 MHz to 3.6 GHz 3.5 to 13.6 GHz 13.5 to 17.1 GHz 17.0 to 22 GHz 22 to 26.5 GHz	$\begin{aligned} & \hline \mathrm{f}+45 \mathrm{MHz} \\ & \mathrm{f}+10,245 \mathrm{MHz} \\ & \mathrm{f}+645 \mathrm{MHz} \\ & \hline \end{aligned}$	-80 dBc -118 dBc typi -80 dBc -112 dBc typi -80 dBc -101 dBc typi -78 dBc -87 dBc typic -74 dBc -84 dBc typic -70 dBc -82 dBc typic -68 dBc -79 dBc typic	
(Mixer level at -30 dBm)	26.5 to 34.5 GHz 34.4 to 44 GHz 44 to 50 GHz	$\begin{aligned} & \hline \mathrm{f}+645 \mathrm{MHz} \\ & \mathrm{f}+645 \mathrm{MHz} \\ & \mathrm{f}+645 \mathrm{MHz} \end{aligned}$	$\begin{array}{ll} \hline-68 \mathrm{dBc} & -84 \mathrm{dBc} \text { typi } \\ -57 \mathrm{dBc} & -79 \mathrm{dBc} \text { typi } \\ & -75 \mathrm{dBc} \text { non } \end{array}$	
Other spurious responses	Mixer level	Response		
Carrier frequency $\leq 26.5 \mathrm{GHz}$ First RF order (f $\geq 10 \mathrm{MHz}$ from carrier) Higher RF order ($f \geq 10 \mathrm{MHz}$ from carrier)	$-10 \mathrm{dBm}$ $-40 \mathrm{dBm}$	$-80 \mathrm{dBc}+20 \log (\mathrm{~N}$ $-80 \mathrm{dBc}+20 \log$	1) Including IF feedthrough, ${ }^{1}$) Including higher order mix	harmonic mixing responses responses
Carrier frequency > 26.5 GHz First RF order (f $\geq 10 \mathrm{MHz}$ from carrier) Higher RF order ($\mathrm{f} \geq 10 \mathrm{MHz}$ from carrier)	$\begin{aligned} & -30 \mathrm{dBm} \\ & -30 \mathrm{dBm} \end{aligned}$	-90 dBc nomina -90 dBc nomina		
LO-related spurious responses ($200 \mathrm{~Hz} \leq \mathrm{f}<10 \mathrm{MHz}$ from carrier), Mixer level at -10 dBm Line-related spurious responses	$-68 \mathrm{dBc}^{2}+20 \log \left(\mathrm{~N}^{1}\right)$			
Second harmonic distortion (SHI)				
	Source frequency	Mixer level	Distortion ${ }^{3}$	SHI ${ }^{3}$
RF/MW (Option 503, 508, 513, 526)	10 to 100 MHz 0.1 to 1.8 GHz 1.75 to 2.5 GHz 2.5 to 4 GHz 4 to 6.5 GHz 6.5 to 10 GHz 10 to 13.25 GHz	-15 dBm -15 dBm $-15 \mathrm{dBm}$ $-15 \mathrm{dBm}$ $-15 \mathrm{dBm}$ $-15 \mathrm{dBm}$ $-15 \mathrm{dBm}$	$-57 \mathrm{dBc} / \mathrm{NA}$ $-60 \mathrm{dBc} / \mathrm{NA}$ $-77 \mathrm{dBc} /-95 \mathrm{dBc}$ $-77 \mathrm{dBc} /-101 \mathrm{dBc}$ $-77 \mathrm{dBc} /-105 \mathrm{dBc}$ $-70 \mathrm{dBc} /-105 \mathrm{dBc}$ $-62 \mathrm{dBc} /-105 \mathrm{dBc}$	$\begin{aligned} & +42 \mathrm{dBm} / \mathrm{NA} \\ & +45 \mathrm{dBm} / \mathrm{NA} \\ & +62 \mathrm{dBm} /+80 \mathrm{dBm} \\ & +62 \mathrm{dBm} /+86 \mathrm{dBm} \\ & +62 \mathrm{dBm} /+90 \mathrm{dBm} \\ & +55 \mathrm{dBm} /+90 \mathrm{dBm} \\ & +47 \mathrm{dBm} /+90 \mathrm{dBm} \end{aligned}$
		Preamp level	Distortion	SHI
Preamp on (Option P03, P08, P13, P26)	10 MHz to 1.8 GHz 1.8 to 13.25 GHz	$\begin{aligned} & -45 \mathrm{dBm} \\ & -50 \mathrm{dBm} \end{aligned}$	-78 dBc nominal -60 dBc nominal	+33 dBm nominal +10 dBm nominal
Millimeter-Wave		Mixer level	Distortion	SHI
(Option 543, 544, 550)	10 to 100 MHz 100 M to 1.8 GHz 1.8 to 2.5 GHz 2.5 to 3 GHz 3 to 5 GHz 5 to 6.5 GHz 6.5 to 10 GHz 10 to 13.25 GHz 13.25 to 25 GHz	$\begin{aligned} & -15 \mathrm{dBm} \\ & -15 \mathrm{dBm} \end{aligned}$	$\begin{aligned} & -57 \mathrm{dBc} / \mathrm{NA} \\ & -60 \mathrm{dBc} / \mathrm{NA} \\ & -72 \mathrm{dBc} /-95 \mathrm{dBc} \\ & -72 \mathrm{dBc} /-99 \mathrm{dBc} \\ & -77 \mathrm{dBc} /-99 \mathrm{dBc} \\ & -77 \mathrm{dBc} /-105 \mathrm{dBc} \\ & -70 \mathrm{dBc} /-105 \mathrm{dBc} \\ & -62 \mathrm{dBc} /-105 \mathrm{dBc} \\ & -65 \mathrm{dBc} /-105 \mathrm{dBc} \text { (nom.) } \end{aligned}$	$\begin{aligned} & +42 \mathrm{dBm} / \mathrm{NA} \\ & +45 \mathrm{dBm} / \mathrm{NA} \\ & +57 \mathrm{dBm} /+80 \mathrm{dBm} \\ & +57 \mathrm{dBm} /+84 \mathrm{dBm} \\ & +62 \mathrm{dBm} /+84 \mathrm{dBm} \\ & +62 \mathrm{dBm} /+90 \mathrm{dBm} \\ & +55 \mathrm{dBm} /+90 \mathrm{dBm} \\ & +47 \mathrm{dBm} /+90 \mathrm{dBm} \\ & +50 \mathrm{dBm} /+90 \mathrm{dBm} \text { (nom.) } \end{aligned}$
Preamp on (Option P03, P08, P13, P26, P43, P44, P50)		Preamp level	Distortion	SHI
	10 MHz to 1.8 GHz 1.8 to 13.25 GHz 13.25 to 25 GHz	$-45 \mathrm{dBm}$ $-50 \mathrm{dBm}$ $-50 \mathrm{dBm}$	$-78 \mathrm{dBc} / \mathrm{NA}$ (nominal) $-60 \mathrm{dBm} / \mathrm{NA}$ (nominal) $-50 \mathrm{dBm} / \mathrm{NA}$ (nominal)	$+33 \mathrm{dBm} / \mathrm{NA}$ (nominal) $+10 \mathrm{dBm} / \mathrm{NA}$ (nominal) $0 \mathrm{dBm} / \mathrm{NA}$ (nominal)

[^2]
Third-order intermodulation distortion (TOI)

(two -16 dBm tones at input mixer with tone separation > 5 times IF prefilter bandwidth, 20 to $30^{\circ} \mathrm{C}$)			
For all frequency options (Option 503, 508, 513, 526, 543, 544, and 550)	10 to 150 MHz 150 to 600 MHz 0.6 to 1.1 GHz 1.1 to 3.6 GHz	$\begin{aligned} & +13 \mathrm{dBm} \\ & +18 \mathrm{dBm} \\ & +20 \mathrm{dBm} \\ & +21 \mathrm{dBm} \end{aligned}$	+16 dBm typical +21 dBm typical +22 dBm typical +23 dBm typical
For RF/MW only (Option 503, 508, 513, and 526)	$\begin{aligned} & 3.5 \text { to } 8.4 \mathrm{GHz} \\ & 8.3 \text { to } 13.6 \mathrm{GHz} \\ & 13.5 \text { to } 17.1 \mathrm{GHz} \\ & 17.0 \text { to } 26.5 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & +17 \mathrm{dBm} \\ & +17 \mathrm{dBm} \\ & +15 \mathrm{dBm} \\ & +16 \mathrm{dBm} \end{aligned}$	+23 dBm typical +23 dBm typical +20 dBm typical +22 dBm typical
For Millimeter-Wave only (Option 543, 544, and 550)	3.5 to 8.4 GHz 8.3 to 13.6 GHz 13.5 to 17.1 GHz 17.0 to 26.5 GHz 26.5 to 50 GHz	$\begin{aligned} & +16 \mathrm{dBm} \\ & +16 \mathrm{dBm} \\ & +13 \mathrm{dBm} \\ & +13 \mathrm{dBm} \end{aligned}$	+23 dBm typical +23 dBm typical +17 dBm typical +20 dBm typical +13 dBm nominal
Preamp on (Option P03, P08, P13, P26, P43, P44, and P50)			
Tones at preamp input (two -45 dBm) (two -45 dBm) (two - 50 dBm)	10 to 500 MHz 500 MHz to 3.6 GHz 3.6 to 26.5 GHz		+4 dBm nominal +4.5 dBm nominal -15 dBm nominal

Figure 1. Nominal TOI performance versus frequency and tone separation

[^3]| Phase noise | Offset | Specification | Typical |
| :--- | :--- | :--- | :--- |
| Noise sidebands | 10 Hz | | $-80 \mathrm{dBc} / \mathrm{Hz}$ nominal |
| $\left(20\right.$ to $\left.30^{\circ} \mathrm{C}, \mathrm{CF}=1 \mathrm{GHz}\right)$ | 100 Hz | $-94 \mathrm{dBc} / \mathrm{Hz}$ | $-100 \mathrm{dBc} / \mathrm{Hz}$ typical |
| | 1 kHz | $-121 \mathrm{dBc} / \mathrm{Hz}$ | $-125 \mathrm{dBc} / \mathrm{Hz}$ typical |
| | 10 kHz | $-129 \mathrm{dBc} / \mathrm{Hz}$ | $-132 \mathrm{dBc} / \mathrm{Hz}$ typical |
| | 30 kHz | $-130 \mathrm{dBc} / \mathrm{Hz}$ | $-132 \mathrm{dBc} / \mathrm{Hz}$ typical |
| | 100 kHz | $-129 \mathrm{dBc} / \mathrm{Hz}$ | $-131 \mathrm{dBc} / \mathrm{Hz}$ typical |
| | 1 MHz | $-145 \mathrm{dBc} / \mathrm{Hz}$ | $-146 \mathrm{dBc} / \mathrm{Hz}$ typical |
| | 10 MHz | $-155 \mathrm{dBc} / \mathrm{Hz}$ | $-158 \mathrm{dBc} / \mathrm{Hz}$ typical |

Figure 3. Nominal PXA phase noise at various center frequencies

Option MPB, microwave preselector bypass

Frequency range	
N9030A-508	3.6 to 8.4 GHz
N9030A-513	3.6 to 13.6 GHz
N9030A-526	3.6 to 26.5 GHz
N9030A-543	3.6 to 43 GHz
N9030A-544	3.6 to 44 GHz
N9030A-550	3.6 to 50 GHz

[^4]
PowerSuite Measurement Specifications

Channel power		
Amplitude accuracy, W-CDMA or IS95 (20 to $30^{\circ} \mathrm{C}$, attenuation $=10 \mathrm{~dB}$)	$\pm 0.61 \mathrm{~dB}(\pm 0.19 \mathrm{~dB} 95$ th percentile)	
Occupied bandwidth		
Frequency accuracy	\pm [span/1000] nominal	
Adjacent channel power		
Accuracy, 3GPP W-CDMA (ACLR) (at specific mixer levels and ACLR ranges)	Adjacent	Alternate
MS (UE) BTS	$\begin{aligned} & \pm 0.09 \mathrm{~dB} \\ & \pm 0.18 \mathrm{~dB} \end{aligned}$	$\begin{array}{r} \hline \pm 0.16 \mathrm{~dB} \\ \pm 0.31 \mathrm{~dB} \\ \hline \end{array}$
Dynamic range (typical) Without noise correction With noise correction	$\begin{aligned} & -82.5 \mathrm{~dB} \\ & -83.5 \mathrm{~dB}\left(-88 \mathrm{~dB}{ }^{1}\right) \end{aligned}$	$\begin{aligned} & -87 \mathrm{~dB} \\ & { }_{-89 \mathrm{~dB}} \end{aligned}$
Offset channel pairs measured	1 to 6	
Multi-carrier ACP		
Accuracy, 3GPP W-CDMA (ACPR) (4 carriers, 5 MHz offset, BTS, UUT ACPR range at -42 to -48 dB , optimal mixer level at - 21 dBm)	$\pm 0.13 \mathrm{~dB}$	
Multiple number of carriers measured	Up to 12	
Power statistics CCDF		
Histogram resolution	0.01 dB	
Harmonic distortion		
Maximum harmonic number	10th	
Result	Fundamental power (dBm), relative harmonics power (dBC), total harmonic distortion in \%	
Intermod (TOI)	Measure the third-order products and intercepts from two tones	
Burst power		
Methods	Power above threshold, power within burst width	
Results	Single burst output power, average output power, maximum power, minimum power within burst, burst width	
Spurious emission		
3GPP W-CDMA table-driven spurious signals; search across regions		
Dynamic range (1 to 3.6 GHz) Absolute sensitivity (1 to 3.6 GHz)	$\begin{aligned} & 97.1 \mathrm{~dB} \\ & -86.4 \mathrm{dBm} \end{aligned}$	(101.9 dB typical) (-90.4 dBm typical)
Spectrum emission mask (SEM)		
cdma2000 ${ }^{\circledR}$ (750 kHz offset) Relative dynamic range Absolute sensitivity Relative accuracy	$\begin{aligned} & 81.6 \mathrm{~dB} \\ & -101.7 \mathrm{dBm} \\ & \pm 0.08 \mathrm{~dB} \end{aligned}$	(86.4 dB typical) (-105.7 dBm typical)
3GPP W-CDMA (2.515 MHz offset) Relative dynamic range Absolute sensitivity Relative accuracy	$\begin{aligned} & 85.4 \mathrm{~dB} \\ & -101.7 \mathrm{dBm} \\ & \pm 0.08 \mathrm{~dB} \end{aligned}$	(89.8 dB typical) (-105.7 dBm typical)

[^5]
General Specifications

Temperature range

Operating	0 to $55^{\circ} \mathrm{C}$
Storage	-40 to $+70^{\circ} \mathrm{C}$
Altitude	
	4,500 meters (approx 15,000 feet)
EMC	

Complies with European EMC Directive 2004/108/EC

- IEC/EN 61326-1 or IEC/EN 61326-2-1
- CISPR Pub 11 Group 1, class A ${ }^{1}$
- AS/NZS CISPR 11:2002
- ICES/NMB-001

This ISM device complies with Canadian ICES-001
Cet appareil ISM est conforme à la norme NMB-001 du Canada

Safety

Complies with European Low Voltage Directive 2006/95/EC

- IEC/EN 61010-1 3rd Edition
- Canada: CSA C22.2 No. 61010-1-12
- USA: UL 61010-1 3rd Edition

Acoustic statement (European Machinery Directive 2002/42/EC, 1.7.4.2u)
Acoustic noise emission
LpA < 70 dB
Operator position
Normal position
Per ISO 7779

Acoustic noise - more information

(Values given are per ISO 7779 standard in the "Operator Sitting" position)
Ambient temperature
$<40^{\circ} \mathrm{C}$
Nominally under 55 dBA Sound Pressure. 55 dBA is generally considered suitable for use in quiet office environment
$\geq 40^{\circ} \mathrm{C}$
Nominally under 65 dBA Sound Pressure. 65 dBA is generally considered suitable for use in noisy office environment

Environmental stress

Samples of this product have been type tested in accordance with the Agilent Environmental Test Manual and verified to be robust against the environmental stresses of storage, transportation, and end-use; those stresses include, but are not limited to, temperature, humidity, shock, vibration, altitude, and power line conditions; test methods are aligned with IEC 60068-2 and levels are similar to MILPRF-28800F Class 3.

Power requirements	
Voltage and frequency	100 to $120 \mathrm{~V}, 50 / 60 / 400 \mathrm{~Hz}$
	220 to $240 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$
Power consumption	
On	630 W (Maximum)
Stanby	40 W

1. The N9030A is in full compliance with CISPR 11, Class A emissions and is declared as such. In addition, the N9030A has been type tested and shown to meet CISPR 11, Class B emissions limits. Information regarding the Class B emission performance of the N9030A is provided as a convenience to the user and is not intended to be a regulatory declaration.

Display	
Resolution Size	$1024 \times 768, \text { XGA }$ 213 mm (8.4 in.) diagonal (nominal)
Data storage	
Internal	Removable solid state drive (80 GB)
External	Supports USB 2.0 compatible memory devices
Weight (without options)	
Net Shipping	$22 \mathrm{~kg}(48 \mathrm{lbs})$ nominal 34 kg (75 lbs) nominal
Dimensions	
Height Width Length	$\begin{aligned} & 177 \mathrm{~mm}(7.0 \mathrm{in}) \\ & 426 \mathrm{~mm}(16.8 \mathrm{in}) \\ & 556 \mathrm{~mm}(21.9 \mathrm{in}) \end{aligned}$
Warranty	
The PXA signal analyzer is supplied with a 3-year standard warranty	
Calibration cycle	
The recommended calibration cycle is one year. Calibration services are available through Agilent service centers	

Inputs and Outputs

External mixing, Option EXM

Connection port	
Connector	SMA, female
Impedance	50Ω nominal
Functions	Triplexed for mixer bias, IF input and LO output
Mixer bias range	$\pm 10 \mathrm{~mA}$ in 10 uA step
IF input center frequency	
Narrowband IF path	322.5 MHz
40 MHz BW IF path	250.0 MHz
85 or 160 MHz BW IF path	300 MHz
LO output frequency range	3.75 to 14.0 GHz
Rear panel	
10 MHz out	
Connector	BNC female, 50Ω nominal
Output amplitude	$\geq 0 \mathrm{dBm}$ nominal
Frequency	$10 \mathrm{MHz}+$ ($10 \mathrm{MHz} \mathrm{x} \mathrm{frequency} \mathrm{reference} \mathrm{accuracy)}$
Ext Ref In	
Connector	BNC female, 50Ω nominal
Input amplitude range	-5 to 10 dBm nominal
Input frequency	1 to 50 MHz nominal (selectable to 1 Hz resolution)
Frequency lock range	$\pm 5 \times 10^{-6}$ of specified external reference input frequency
Trigger 1 and 2 inputs	
Connector	BNC female
Impedance	$>10 \mathrm{k} \Omega$ nominal
Trigger level range	-5 to +5 V (TTL) factory preset
Trigger 1 and 2 outputs	
Connector	BNC female
Impedance	50Ω nominal
Level	0 to 5 V (CMOS) nominal
Sync (reserved for future use)	
Connector	BNC female
Monitor output	
Connector	VGA compatible, 15-pin mini D-SUB
Format	XGA (60 Hz vertical sync rates, non-interlaced) Analog RGB
Resolution	1024×768
Noise source drive +28 V (pulsed)	
Connector	BNC female
Output voltage	On $28.0 \pm 0.1 \mathrm{~V}$ (60 mA maximum)
	Off < 1 V
SNS series noise source	For use with the Agilent Technologies SNS Series noise sources
Digital bus (reserved for future use)	
Connector	MDR-80

Rear panel	
Analog out Connector	BNC female
USB 2.0 ports Master (4 ports) Standard Connector Output current Slave (1 port) Standard Connector Output current	Compatible with USB 2.0 USB Type-A female 0.5 A nominal Compatible with USB 2.0 USB Type-B female 0.5 A nominal
GPIB interface Connector GPIB codes GPIB mode	IEEE-488 bus connector SH1, AH1, T6, SR1, RL1, PP0, DC1, C1, C2, C3, C28, DT1, L4, C0 Controller or device
LAN TCP/IP interface Standard Connector	1000Base-T RJ45 Ethertwist
IF output Connector Impedance	SMA female, shared by Opts CR3, CRP, and ALV 50Ω nominal
2nd IF output, Option CR3	
```Center frequency SA mode or I/Q analyzer with IF \(\mathrm{BW} \leq 25 \mathrm{MHz}\) with Option B40 with Option B85/B1X```	$\begin{aligned} & 322.5 \mathrm{MHz} \\ & 250 \mathrm{MHz} \\ & 300 \mathrm{MHz} \end{aligned}$
Conversion gain	-1 to +4 dB (nominal) plus RF frequency response
Bandwidth   Low band High band, with preselector High band, with preselector bypassed ${ }^{1}$	Up to 160 MHz (nominal)   Depends on center frequency   Up to 700 MHz (nominal); expandable to 900 MHz with corrections
Arbitrary IF output, Option CRP	
Center frequency Range Resolution	10 to 75 MHz (user selectable) $0.5 \mathrm{MHz}$
Conversion gain	-1 to +4 dB (nominal) plus RF frequency response
Bandwidth   Output at 70 MHz   Low band or high band with preselector bypassed Preselected band	100 MHz (nominal)   Depends on RF center frequency
Lower output frequencies	Subject to folding
Residual output signals	$\leq-88 \mathrm{dBm}$ (nominal)

[^6]
## Other Optional Output

Option ALV Log video out

General port specifications	
Connector Impedance	SMA female Shared with other options   $50 \Omega$ nominal
Fast log video output	
Output voltage Maximum Slope	Open-circuit voltages shown 1.6 V at -10 dBm nominal $25 \pm 1 \mathrm{mV} / \mathrm{dB}$ nominal
Log fidelity   Range   Accuracy within range	49 dB (nominal) with input frequency at 1 GHz $\pm 1.0 \mathrm{~dB}$ nominal
Rise time	15 ns nominal
Fall time   Bands 1-4 with Option MPB Other cases	40 ns nominal best case,   Depends on bandwidth

Option YAV Y-Axis output

General port specifications	
Connector Impedance	BNC female Shared with other options   $50 \Omega$ nominal
Screen video	
Operating conditions Display scale types Log scales   Modes   Gating	Log or Lin "Lin" is linear in voltage   All ( 0.1 to $20 \mathrm{~dB} / \mathrm{div}$ )   Spectrum analyzer only   Gating must be off
Output scaling Offset Gain accuracy	0 to 1.0 V open circuit, representing bottom to top of screen   $\pm 1 \%$ of full scale nominal   $\pm 1 \%$ of output voltage nominal
Delay between RF input to analog output	$71.7 \mu \mathrm{~s}+2.56 / \mathrm{RBW}+0.159 /$ VBW nominal
Log video (Log envelope) output	
Amplitude range (terminated with $50 \Omega$ )	
Maximum	1.0 V nominal for -10 dBm at the mixer
Scale factor   Bandwidth   Operating conditions	1 V per 192.66 dB   Set by RBW   Select Sweep Type = Swept
Linear video (AM Demod) output	
Amplitude range (terminated with $50 \Omega$ )	
Maximum Minimum	1.0 V nominal for signal envelope at the reference level 0 V
Scale factor	If carrier level is set to half the reference level in volts, the scale factor is $200 \%$ of carrier level per volt. Regardless of the carrier level, the scale factor is $100 \%$ of reference level per volt.
Bandwidth   Operating conditions	Set by RBW   Select Sweep Type = Swept

## I/Q Analyzer

Frequency
Frequency span
Standard instrument
Option B25
Option B40
Option B85
Option B1X


Resolution bandwidth (spectrum measurement)					
Range					
Overall	100 mHz to 3 MHz				
Span $=1 \mathrm{MHz}$	50 Hz to 3 MHz				
Span $=10 \mathrm{kHz}$	1 Hz to 10 kHz				
Span $=100 \mathrm{~Hz}$	100 mHz to 100 Hz				
Window shapes	Flat Top, Uniform, Hanning, Hamming, Gaussian, Blackman, Blackman-Harris, Kaiser Bessel (K-B $70 \mathrm{~dB}, \mathrm{~K}-\mathrm{B} 90 \mathrm{~dB}$ and K-B 110 dB )				
Analysis bandwidth (waveform measurement)					
Standard instrument	10 Hz to 10 MHz				
Option B25	10 Hz to 25 MHz				
Option B40	10 Hz to 40 MHz				
Option B85	10 Hz to 85 MHz				
Option B1X	10 Hz to 160 MHz				
IF frequency response (standard $10 \mathrm{MHz} \mathrm{IF} \mathrm{path)}$					
IF frequency response (demodulation and FFT response relative to the center frequency)					
Freq (GHz)	Analysis BW (MHz)	Max error	Midwidth error (95th percentile)	Slope (dB/ MHz ) (95th percentile)	RMS (nominal)
$\leq 3.6$	$\leq 10$	$\pm 0.20 \mathrm{~dB}$	$\pm 0.12 \mathrm{~dB}$	$\pm 0.10 \mathrm{~dB}$	0.02 dB
3.6 to 26.5	$\leq 10$ preselected				0.23 dB
3.6 to 26.5	$\leq 10$ preselector off ${ }^{1}$	$\pm 0.25 \mathrm{~dB}$	$\pm 0.12 \mathrm{~dB}$	$\pm 0.10 \mathrm{~dB}$	0.02 dB
26.5 to 50	$\leq 10$ preselected				0.12 dB
26.5 to 50	$\leq 10$ preselected off ${ }^{1}$	$\pm 0.30 \mathrm{~dB}$	$\pm 0.12 \mathrm{~dB}$	$\pm 0.10 \mathrm{~dB}$	0.024 dB

[^7]
## I/Q Analyzer (continued)

IF phase linearity				
Center freq (GHz)	Span (MHz)	Preselector	Peak-to-peak (nominal)	RMS (nominal)
$\geq 0.02,<3.6$	$\leq 10$	NA	$0.06{ }^{\circ}$	$0.012^{\circ}$
$\geq 3.6$ to $\leq 26.5$	$\leq 10$	Off ${ }^{1}$	$0.10^{\circ}$	$0.022^{\circ}$
$\geq 3.6$	$\leq 10$	On	$0.11^{\circ}$	$0.024^{\circ}$
Dynamic range (standard $10 \mathrm{MHz} \mathrm{IF} \mathrm{path)}$				
Clipping-to-noise dynamic range				Excluding residuals and spurious responses
$\begin{aligned} & \text { Clipping level at mixer } \\ & \text { IF gain }=\text { Low } \\ & \text { IF gain }=\text { High } \end{aligned}$	$\begin{aligned} & -10 \mathrm{dBm} \\ & -20 \mathrm{dBm} \end{aligned}$			Center frequency $\geq 20 \mathrm{MHz}$ -8 dBm nominal   -17.5 dBm nominal
Noise density at mixer at center frequency	(DANL + IF Gain effect) +2.25 dB			
Data acquisition (standard 10 MHz IF path)				
Time record length				
Analysis tool				
10 analyzer	4,000,000 IO sample Pairs			
Advanced tools	Data packing		89600 VSA software or N9064A VXA	
	32-bit	64-bit		
Length (IO sample pairs) Length (time units)	$536 \mathrm{MSa}\left({ }^{29} \mathrm{Sa}\right)$	$268 \mathrm{MSa}\left(2^{28} \mathrm{Sa}\right)$	2 GB total me	
	Samples/(span x 1.28)			
Sample rate				
At ADC IO pairs	100 Msa /s Span dependent			
ADC resolution	16 bits			

[^8]
## I/O Analyzer (continued)

Option B25 25 MHz analysis bandwidth (Option B25 is automatically included in Option B40, B85 or B1X)

IF frequency response (B25 IF path)					
IF frequency response (demodulation and FFT response relative to the center frequency)					
Freq (GHz)	Analysis BW (MHz)	Max error	Midwidth error (95th percentile)	Slope (dB/   MHz) (95th   percentile)	RMS (nominal)
< 3.6	10 to $\leq 25$	$\pm 0.30 \mathrm{~dB}$	$\pm 0.12 \mathrm{~dB}$	$\pm 0.05 \mathrm{~dB}$	0.02 dB
3.6 to 26.5	$10 \text { to } \leq 25$ preselected				0.50 dB
3.6 to 26.5	10 to $\leq 25$ preselector off ${ }^{1}$	$\pm 0.40 \mathrm{~dB}$			0.03 dB
26.5 to 50	$10 \text { to } \leq 25$ preselected				0.31 dB
26.5 to 50	10 to $\leq 25$ preselector off ${ }^{1}$	$\pm 0.40 \mathrm{~dB}$			0.02 dB
IF phase linearity					
Center freq (GHz)	Span (MHz)	Preselector	Peak-to-peak (nominal)		RMS (nominal)
$\geq 0.02,<3.6$	$\leq 25$	NA	$0.48{ }^{\circ}$		$0.12^{\circ}$
$\geq 3.6$	$\leq 25$	Off ${ }^{1}$	$0.85^{\circ}$		$0.20^{\circ}$
Dynamic range (B25 IF path)					
Full scale (ADC clipping)					
Default settings, signal at CF (IF gain = Low)					
High gain setting, signal at CF (IF gain = High)					
Effect of signal frequency $\neq \mathrm{CF}$	Up to $\pm 3 \mathrm{~dB}$ nominal				
Data acquisition (B25 IF path)					
Time record length					
Analysis tool					
10 analyzer	4,000,000 IO sample Pairs				
Advanced tools	Data packing		89600 VSA software or N9064A VXA		
	32-bit	64-bit			
Length (IO sample pairs)	$536 \mathrm{MSa}\left(2^{29} \mathrm{Sa}\right)$	$268 \mathrm{MSa}\left({ }^{28} \mathrm{Sa}\right)$	2 GB total me		
Length (time units)	Samples/(span x 1.28)				
Sample rate					
At ADC IO pairs	100 Msa /s Span dependent				
ADC resolution	16 bits				

[^9]
## I/O Analyzer (continued)

Option B40 40 MHz analysis bandwidth (Option B40 is automatically included in Option B85 or B1X)

IF frequency response (B40 IF path)					
IF frequency response				Relative to center frequency	
Center freq. (GHz)	Span (MHz)	Preselector		Typical	RMS (nominal)
$\geq 0.03,<3.6$	$\leq 40$	NA	$\pm 0.4 \mathrm{~dB}$	$\pm 0.25 \mathrm{~dB}$	0.05 dB
$\geq 3.6, \leq 8.4$	$\leq 40$	Off ${ }^{1}$	$\pm 0.4 \mathrm{~dB}$	$\pm 0.16 \mathrm{~dB}$	0.05 dB
$>8.4, \leq 26.5$	$\leq 40$	Off ${ }^{1}$	$\pm 0.7 \mathrm{~dB}$	$\pm 0.20 \mathrm{~dB}$	0.05 dB
$\geq 26.5,<34.4$	$\leq 40$	Off ${ }^{1}$	$\pm 0.8 \mathrm{~dB}$	$\pm 0.25 \mathrm{~dB}$	0.1 dB
$\geq 34.4$, < 50	$\leq 40$	Off ${ }^{1}$	$\pm 1.0 \mathrm{~dB}$	$\pm 0.35 \mathrm{~dB}$	0.1 dB
IF phase linearity (deviation from mean phase linearity)					
Center freq (GHz)	Span (MHz)	Preselector		Peak-to-peak (nominal)	RMS (nominal)
$\geq 0.03,<3.6$	$\leq 40$	NA		$0.16{ }^{\circ}$	$0.041^{\circ}$
$\geq 3.6$	$\leq 40$	Off ${ }^{1}$		$1.5{ }^{\circ}$	$0.35^{\circ}$
EVM (EVM measurement floor for an 802.11 g OFDM signal, using 89600 B software equalization, channel estimation and data EQ)					
2.4 GHz				-52.0 dB (0.25\%)	nominal
5.8 GHz with Option MPB				-49.1 dB (0.35\%)	nominal
Dynamic range (B40 IF path)					
SFDR   (Spurious-free dynamic range)					
Signal frequency within $\pm 12 \mathrm{MHz}$ of center	-80 dBc nominal				
Signal frequency anywhere within analysis BW					
Spurious response within $\pm 18 \mathrm{MHz}$ of center	-79 dBc nominal				
Response anywhere within analysis BW	-77 dBc nominal				
Full scale (ADC clipping)					
Default settings, signal at CF (IF gain = Low: IF gain offset = 0 dB )					
Band 0	-8 dBm mixer level nominal				
Bands 1 through 4	-7 dBm mixer level nominal				
High gain setting, signal at CF (IF gain = High)					
Band 0	-18 dBm mixer level nominal, subject to gain limitations				
Bands 1 through 4	-17 dBm mixer level nominal, subject to gain limitations				
Effect of signal frequency $\neq$ CF	Up to $\pm 3 \mathrm{~dB}$ nominal				

1. Option MPB is installed and enabled.

## I/O Analyzer (continued)

Option B40 40 MHz analysis bandwidth

Data acquisition (B40 IF path)			
Time record length			
Analysis tool			
10 analyzer	4,000,000 I0 sample pairs		
Advanced tools	Data packing		89600 VSA software or N9064A VXA
	32-bit	64-bit	
Length (IO sample pairs)	$536 \mathrm{MSa}\left(2^{29} \mathrm{Sa}\right)$	$268 \mathrm{MSa}\left(2^{28} \mathrm{Sa}\right)$	2 GB total memory
Length (time units)	Samples/(span x 1.28)		
Sample rate			
At ADC	200 Msa /s		
10 pairs	Span dependent		
ADC resolution	12 bits		

## I/Q Analyzer (continued)

Option B85 85 MHz or B1X 160 MHz analysis bandwidth


[^10]
## I/Q Analyzer (continued)

Option B85 85 MHz or B1X 160 MHz analysis bandwidth

Dynamic range (B85 or B1X IF path)			
SFDR (Spurious-free dynamic range)	-75 dBc nominal		
Signal frequency within $\pm 12 \mathrm{MHz}$ of center			
Signal frequency anywhere within analysis BW			
Spurious response within $\pm 63 \mathrm{MHz}$ of center	-74 dBc nominal		
Response anywhere within analysis BW	-72 dBc nominal		
Full scale (ADC clipping)			
Default settings, signal at CF    (IF gain = Low: IF gain offset $=0 \mathrm{~dB}$ )    Band 0 -8 dBm mixer level nominal   Band 1 through 4 -7 dBm mixer level nominal			
High gain setting, signal at CF    (IF gain = High)    Band 0 -18 dBm mixer level nominal, subject to gain limitations   Band 1 through 4 -17 dBm mixer level nominal, subject to gain limitations			
Effect of signal frequency $\neq \mathrm{CF}$	Up to $\pm 3 \mathrm{~dB}$ nominal		
Data acquisition (B85 or B1X IF path)			
Time record length			
Analysis tool			
IO analyzer	4,000,000 IO sample pairs		
Advanced tools	Data packing		89600 VSA software or N9064A VXA
	32-bit	64-bit	
Length (IO sample pairs)	$536 \mathrm{MSa}\left(2^{29} \mathrm{Sa}\right)$	$268 \mathrm{MSa}\left(2^{28} \mathrm{Sa}\right)$	2 GB total memory
Length (time units)	Samples/(span x 1.28)		
Sample rate			
At ADC	400 Msa /s		
10 pairs	Span dependent		
ADC resolution	14 bits		

## Real-time spectrum analyzer (RTSA) ${ }^{1}$

Option RT1 or RT2

## Real-time analysis

Real-time analysis bandwidth
Option RT1
Option RT2
Minimum detectable signal duration
with $>60 \mathrm{~dB} \mathrm{StM}{ }^{2}$ ratio Option RT1
Option RT2
Minimum signal duration with $100 \%$ probability of intercept (POI) at full amplitude accuracy
Option RT1
Option RT2
Minimum acquisition time FFT rate

Up to 160 MHz Up to 160 MHz
11.42 ns
5.0 ns
$17.3 \mu \mathrm{~s} \quad$ Signal is at mask level
$3.57 \mu \mathrm{~s} \quad$ Signal is at mask level
$100 \mu \mathrm{~s}$
292,969/s

For Frequency Mask Triggering (FMT)
Analysis BW option determines the max real-time bandwidth Analysis BW option determines the max real-time bandwidth

1. For additional RTSA specifications, please refer to Option RT1/RT2 Chapter in the PXA Signal Analyzer specifications guide
2. $S t M=$ "Signal-to-Mask"

## Related Literature

Agilent PXA signal analyzers	
Brochure $\quad 5990-3951 \mathrm{EN}$	
Configuration guide	$5990-3953 \mathrm{EN}$

For more information or literature resources please visit the web: www.agilent.com/find/pxa

Additional information, including literature, can be found at the Agilent website:
www.agilent.com/find/PXA www.agilent.com/find/xseries_apps
www.agilent.com/find/myagilent
A personalized view into the information most relevant to you.

## Lx

## www.Ixistandard.org

LAN eXtensions for Instruments puts the power of Ethernet and the Web inside your test systems. Agilent is a founding member of the LXI consortium.

## Agilent Channel Partners

uwwagilent.com/find/channelpartners
Get the best of both worlds: Agilent's measurement expertise and product breadth, combined with channel partner convenience.
cdma $2000^{\circledR}$ is a registered certification mark of the Telecommunications Industry Association. Used under license.

www.agilent.com/find/ThreeYearWarranty Agilent's combination of product reliability and three-year warranty coverage is another way we help you achieve your business goals: increased confidence in uptime, reduced cost of ownership and greater convenience.

Agilent Advantage Services
www.agilent.com/find/AdvantageServices
Accurate measurements throughout the life of your instruments.

www.agilent.com/quality

## www.agilent.com

www.agilent.com/find/N9030A

For more information on Agilent Technologies' products, applications or services, please contact your local Agilent office. The complete list is available at:
www.agilent.com/find/contactus
Americas

Canada	$(877) 8944414$
Brazil	$(11) 41973600$
Mexico	018005064800
United States	$(800) 8294444$

Asia Pacific

Australia	1800629485
China	8008100189
Hong Kong	800938693
India	1800112929
Japan	$0120(421) 345$
Korea	0807690800
Malaysia	1800888848
Singapore	18003758100
Taiwan	0800047866
Other AP Countries	$(65) 3758100$

Europe \& Middle East

Belgium	$32(0) 24049340$
Denmark	4545801215
Finland	$358(0) 108552100$
France	$0825010700^{*}$
	${ }^{*} 0.125 € /$ minute
Germany	$49(0) 70314646333$
Ireland	1890924204
Israel	$972-3-9288-504 / 544$
Italy	390292608484
Netherlands	$31(0) 205472111$
Spain	$34(91) 6313300$
Sweden	$0200-882255$
United Kingdom	$44(0) 1189276201$

For other unlisted countries:
www.agilent.com/find/contactus
Revised: January 6, 2012
Product specifications and descriptions in this document subject to change without notice.
© Agilent Technologies, Inc. 2013
Published in USA, October 21, 2013
5990-3952EN


[^0]:    1. Horizontal resolution is span/(sweep points -1).
[^1]:    1. With the NFE (Noise Floor Extension) "Off".
    2. LNP (Low Noise Path) requires option LNP.
    3. At higher frequency bands (beyond 3.6 GHz ), Preamp "On" supersedes "LNP enabled". LNP cannot operate simultaneously with preamp.
[^2]:    1. $N$ is the $L O$ multiplication factor. Refer to page 4 for the $N$ value verses frequency ranges.
    2. Nominally -40 dBc under large magnetic ( 0.38 Gauss rms) or vibrational ( 0.21 g rms ) environmental stimuli.
    3. Normal path/LNP enabled (requires Option LNP).
[^3]:    ——DANL (30 kHz RBW)
    ——DANL ( 1 Hz RBW)
    --2nd Harmonic Distortion
    ——3rd Order Intermodulation

[^4]:    1. When Option MPB is installed and enabled, some aspects of the analyzer performance change. Please refer to the PXA specification guide for more details.
[^5]:    1. Nominal value base on hand-measured results from early production units. These observations were done near 2 GHz , the common W-CDMA operating region.
[^6]:    1. The maximum bandwidth is not centered around the IF output center frequency.
[^7]:    1. Option MPB is installed and enabled.
[^8]:    1. Option MPB is installed and enabled.
[^9]:    1. Option MPB is installed and enabled.
[^10]:    1. Option MPB is installed and enabled.
