JDSU SWS16101 REPAIR and JDSU SWS16101 CALIBRATION

 
Custom-Cal has a high success rate in the repair of the JDSU SWS16101. A calibration by Custom-Cal is performed by engineers with extensive OEM experience. We have the expertise and the necessary standards to perform the JDSU SWS16101 Calibration, onsite calibration may be available. We specialize in quick turnaround times and we can handle expedited deliveries upon request.

Need another Tunable Laser Source (TLS)?
Shop for Comparable Products on our
 used Tunable Laser Source (TLS) page or new Tunable Laser Source (TLS) page

 
   JDSU SWS16101   Description / Specification:    
JDSU SWS16101 1540 to 1630 nm Tunable Laser Source

The JDSU SWS16101 Tunable Laser Source can be used as a stand-alone unit or as a component of the JDS Uniphase Swept Wavelength System (SWS). The cavity in the SWS16101 tunable laser source is self-aligned, a key feature for long-term stability. Extremely smooth scans over 100 nm are obtained in two seconds, with 1 pm resolution, for truly continuous tunability. Digitally controlled analog fine-tuning extends resolution beyond the 1 pm steps into the MHz domain. Operating range of 65 nm is free of any mode hop, ensuring a smooth and accurate wavelength sweep for reliable testing of narrowband components. Output power of more than 0 dBm over 65 nm and -3 dBm is guaranteed over the entire spectral range. Self-aligned optical layout, single-moving-part design, and an all-invar construction ensure long term stability. Keyboard and display are optimized for natural, unambiguous laboratory operation. All parameters can either be keyed in or adjusted using the multi-speed rotary control. Analog and digital modulation of the optical power from DC to 1 GHz provides multiple modulation possibilities. The cavity is designed to allow mode-locked operation of approximately 5 GHz. The 100 kHz line width can be degraded to 100 MHz when high coherence is a problem. Computer interfaces and analog inputs and outputs allow complete remote operation and ease of system integration. Specifications. Mode hop-free range (P = 3 dBm) in L-band: 1540 to 1630 nm. Absolute wavelength accuracy: ±0.2 nm. Tuning accuracy (on the mode hop-free range): ±0.02 nm. Tuning repeatability (on the mode hop-free range): ±0.005 nm. Wavelength setting resolution: 0.001 nm. Optical frequency fine tuning range: ±2 GHz. Power stability: ±0.01 dB, peak-to-peak in 1 hour. Wavelength stability (at constant temperature): 0.001 nm. Typical linewidth (FWHM) (on the mode hop-free range): 100 kHz. Linewidth with coherence control: >100 MHz. Side frequency suppression ratio: >35 dB.



 

Standard Calibration $400.00 *
Click on Logo for More Prices
*This is a Web introductory price for one calibration of the JDSU SWS16101. Price does not in most cases include measurement performance data. Pricing does include NIST traceable calibration and issue of a calibration certificate and calibration label. Pricing may vary slightly due to volume and location of laboratory supporting calibration. Volume pricing may apply. On-site fees may apply depending on logistics, location and volume of work to be completed during the visit.


Related Optical Terms and Definitions. For a complete list go to our  Terms and Definitions Page.

Coherence Length
Average distance over which superimposed waves lose their phase relationships

Linewidth
Linewidth is the width of a spectral line in terms of wavelength, wave number and frequency.

Power Flatness Versus Wavelength
When changing the wavelength at constant power setting and recording the differences between actual and displayed power levels, the power flatness is ± half the span (in dB) between the maximum and the minimum of the measured power levels.

Spectral Width
Spectral Width is the wavelength interval over which the magnitude of all spectral components is equal to or greater than a specified fraction of the magnitude of the component having the maximum value. In optical communications applications, the usual method of specifying spectral width is the full width at half maximum. This is the same convention used in bandwidth, defined as the frequency range where power drops by less than half (at most -3 dB).

Telecom Bands
Optical fiber communications typically operate in a wavelength region corresponding to one of the following Bands. O Band (original): 1260–1360 nm. E Band (extended): 1360–1460 nm. S Band (short wavelengths): 1460–1530 nm. C Band (conventional): 1530–1565 nm. L Band (long wavelengths): 1565–1625 nm. U Band (ultralong wavelengths): 1625–1675 nm


Please contact us for your JDSU SWS16101 REPAIR and/or JDSU SWS16101 1540 to 1630 nm Tunable Laser Source CALIBRATION

I'm interested in: 
Calibration Type (Select one):


Repair Information:
 Serial Number:

 Is there any physical damage?  
 If yes, describe:


What is the description of the problem?

How/when did the problem start?


 (*) Required Fields    For formal quote please fill in all fields.
Company:
From (Email):*
Contact Name:*
Country:*
Address 1:
Address 2:
City:
State/Territory/Province: *
Zip/Postal Code:
Phone:*

Comment: